\operatorname{tg} \cfrac{5 \pi}{12}= \operatorname{tg}\Big(\cfrac{3\pi}{12}+\cfrac{2\pi}{12}\Big)=
\operatorname{tg}\Big(\cfrac{\pi}{4}+\cfrac{\pi}{6}\Big)= \cfrac{\operatorname{tg} \cfrac{\pi}{4}+\operatorname{tg} \cfrac{\pi}{6}}{1-\operatorname{tg} \cfrac{\pi}{4} \cdot \operatorname{tg} \cfrac{\pi}{6}}=
\cfrac{1+ \cfrac{\sqrt{3}}{3} }{1-1 \cdot \cfrac{\sqrt{3}}{3}}= \cfrac{3+ \sqrt{3} }{3-\sqrt{3}}=
\cfrac{(3+\sqrt{3})^{2}}{(3-\sqrt{3})(3+\sqrt{3})}=
\cfrac{9+6 \sqrt{3}+3}{9-3}=\cfrac{12+6 \sqrt{3}}{6}=2+\sqrt{3} ;